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SUMMARY

OBJECTIVE

In the absence of real time measurement of aerosol size distributions, develop
a technique of selecting appropriate input parameters to an aerosol model, based on
measurable meteorological parameters, which can be used in infrared transmittance
calculations.

RESULTS

This study has shown that nonunique combinations of air mass factors and
visibility allow an appropriate LOWTRAN 6 Navy Maritime Aerosol Model to be
selected such that calculated and measured infrared horizon radiances agree.
RECOMMENDATIONS

Extend modeling effort to incorporate a near infrared Light Detection and

Ranging (LIDAR) system with the infrared measurements to select an appropriate
aerosol model for both the near and far infrared wavelength bands.
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INTRODUCTION

In the absence of size distribution measurements, we must presently rely on
the models in the LOWTRAN 6 (Kneizys, 1983) code to calculate the effccts of aero-
sols on infrared (IR) atmospheric transmittances and background radiances using
measured meteorological parameters as inputs. These aerosol models were developed
to be as representative as possible of different atmospheric conditions. However, they
cannot be expected to exactly reproduce the optical properties in a given location at
any specific time. A method is needed for selecting the input parameters so that the
model best represents a particular situation. Of particular interest to Navy applica-
tions, is the Navy Maritime Aerosol Model for use in electro-optical systems perform-
ance prediction codes.

This model (see Appendix) is the sum of three log normal-size distributions,
and, in addition to the surface wind speeds (current and 24-hour averaged) and rela-
tive humidity, requires the input of an air mass factor which identifies the origin of
the aerosols as either marine or continental which is allowed to range between inte-
ger values of 1 for open ocean conditions and 10 for coastal regions. Also, when an
observed surface visibility is available as an input, the model is adjusted so that the
visibility calculated at a wavelength of 0.55 pm is the same as the observed value.
The accuracy to which this model can predict atmospheric transmission or radiance
for a given wavelength band is sensitive to the selection of the appropriate visibility
and air mass factor (Gathman, 1983). The air mass factor may be determined by
either the measurement of atmospheric radon or by an air mass trajectory analysis to
determine the time the air mass has been over land.

The second option is extremely difficult, and requires a large data set of
synoptic flow patterns. Neither of these techniques are presently available for ship-
board use. Also, radiance contrast measurements between the sky background and
objects at known distances in the open ocean are rarely available, and visibilities
inferred from point scattering measurements onboard ship are most apt to be
contaminated by ship effluences.

In this paper, a remote sensing technique is presented whereby an appropriate
aerosol size distribution model can be selected which is applicable to transmittance
and radiance calculations in the far infrared wavelength bands. In this method, non-
unique combinations of the air mass factor and visibility for different meteorological
conditions are inferred from LOWTRAN 6 calculations which allow agreement with
measurements of 8- to 12-um horizon radiances.

MEASUREMENTS

For this study, a Piper Navajo aircraft, equipped with Rosemount temperature
and pressure probes, and an EG&G dewpoint sensor, made vertical spirals over the
ocean to obtain the profile of temperature, relative humidity and pressure which are
required inputs to the LOWTRAN 6 computer code for calculating the sky radiances.
The vertical profiles of temperature and relative humidity, measured at 1450 PST on
9 November and 1424 PST 10 November 1988 off the coast of San Diego, California,
are shown in Figures 1 and 2, respectively. The current and 24 hour averaged wind
speeds (V, =3.7 m/s and V=2.1 m/s for 9 November, and V., =4.8 m/s and V=2.8 m/s




for 10 November) measured on shore during both days were from a westerly direc-
tion. At the time the meteorological parameters were obtained, measurements of IR
(8- to 12-um) horizon radiances were also made with a calibrated thermal imaging
system (AGA THERMOVISION, model 780) using a 2.95° field-of-view lens.

For these measurements the scanner was located at an elevation of 33 m on
the Point Loma peninsula in San Diego and was directed over the ocean in a
southerly direction. The response of the system is determined by placing a blackbody
of known temperature (30.1°C for temperatures <50°C) in front of the lens aperture.
The digitized video signal transfer function of the system then allows the blackbody
temperature to be reproduced to within 0.2°C. The data processing software of the
AGA system also allows the thermal scene to be displayed on a computer terminal in
a format consisting of 128 pixels (0.023°/pixel). The effective blackbody temperature
corresponding to each pixel can then be displayed on the screen by positioning a
cursor at the appropriate position.
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CALCULATION OF BACKGROUND RADIANCE SCENES

These measurements can be modeled with LOWTRAN 6 calculations to aid in
selecting an appropriate aerosol model for radiance calcuiations on each day. In these
calculations the meteorological profiles were divided into 33 layers as allowed by
LOWTRAN 6. The lower layers of the profiles are also divided into sublayers contain-
ing the same amount of absorbing and scattering material and temperature as the
original layer. This artificial layering has been found necessary (Wollenweber, 1988)
to remove the anomalous dip (Hughes, 1987) which occurs when aerosols are included
in the LOWTRAN 6 radiance calculations for zenith angles close to 90°.

As the AGA scanner could not be accurately plumbed, the zenith angle of the
infrared horizon (the pixel corresponding to the maximum radiance) in each thermo-
gram was taken to be one-half of a pixel less than the angle (8 =90.177° on 9 Novem-
ber and 8 =90.175° on 10 November) for which the LOWTRAN calculations indicated
the refracted ray path first struck the earth. Using these zenith angles with the
measured profiles of meteorological parameters, the visibility required to match the
measured horizon pixel radiance, for each integer value of air mass factor, must be
determined by iteration from several different LOWTRAN calculations. The locus of
points which allow the LOWTRAN calculations to exactly match the measured
horizon pixel radiances (3.27 mW/cm? sr on 9 November and 3.281 mW/cm? sr on 10
November) with nonunique combinations of air mass factor and visibility for the two
days are shown in Figure 3.

This feature is the result of the visibility scaling factor (see Appendix) of the
size distribution remaining nearly constant for any appropriate combination of the
two factors, and the relative insensitivity of the calculated extinction coefficients for
the far infrared wavelengths to the air mass factor term (AM) as shown in Figure 4.
Any appropriate combination of the two factors will allow the radiances calculated at
other angles above the horizon to be nearly identical as seen in Figures 5 and 6.
Using widely different combinations of air mass factors and visibilities as shown in
the figures, the calculated and measured values for 9 November differ by less than 2%
over an elevation angle of approximately 1°.

These radiance differences correspond to equivalent blackbody temperature
differences of less than 0.7°C near the elevation angles of 0.4° and 0.8°. On 10 No-
vember the calculated and measured radiances with elevation are in excellent agree-
ment below 0.8° elevation angle. Above that angle, the radiance differences amount
to less than 0.5°C in equivalent blackbody temperature.

The variations in calculated transmittances (r) to the infrared horizons (Ru.r =
19.491 km on 9 November and Ruor =18.073 km on 10 November), corresponding to
the zenith angles where the refracted ray path first hit the earth, are shown in Figure
7 for the different combinations of air mass factor (AM) and required visibility. The
resulting extinction coefficient (determined from the relation o=(-In7)/Ru.r are shown
in Figure 8. Both the calculated transmittances and resulting extinction coefficients
show little variation for the different combinations of air mass factor and required
visibility. These calculations are also summarized in Table 1. In the table, N, N,
and V, refer to the calculated and measured radiances, and required visibility,

respectively.
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DISCUSSION

The results of this study have shown that in the absence of radon and visibil-
ity measurements, appropriate combinations of these two inputs to the Navy Aerosol
Model can be inferred from LOWTRAN 6 calculations using standard meteorological
inputs to match measured infrared horizon pixel radiances. In a practical sense, so-
phisticated instruments with the temperature resolution (0.1°C) and instantaneous
field-of-view (0.87 mr) similar to the AGA would have to be mounted on stabilized
platforms for shipboard use. Such instruments are not presently available. However,
horizon radiance measurements with hand-held instruments with wider fields-of-view
of 1° or better could possibly be matched by calculated radiances integrated over the
instrument’s field-of-view as demonstrated in figures 5 and 6.

The approach here is limited to the far infrared wavelengths. For shorter
wavelengths the transmittances and extinction coefficients calculated with the model
will depend more strongly on the air mass factor in the first component of the distri-
bution. In earlier work (Hughes, 1988), it was demonstrated that an appropriate
aerosol size distribution could be selected which is applicable to transmittance and
radiance calculations in both the visible and IR wavelength bands by including calcu-
lations which also matched the visible atmospheric optical depths determined from
satellite detected upwelling solar radiances. This approach, however, is limited to
cloud-free sky conditions during the daytime and requires a favorable position of the
satellite to avoid sun glint from the ocean. An alternative approach is to incorporate
a visible or near-infrared LIDAR system with the infrared measurements and model
the backscattered power as a function of range.
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APPENDIX A

DESCRIPTION OF THE LOWTRAN 6 NAVY MARITIME
AEROSOL MODEL
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DESCRIPTION OF THE LOWTRAN 6 NAVY MARITIME
AEROSOL MODEL

Description of the particle size distribution model (at radius r) is the sum of
three log-normal distributions given by

3
n@) = T Aexp|- (In—)? (cm™ um™), (1)
i=1 fry
where
A; = 2000(AM)?, (2)
A; = 5.866 (V - 2.2), 3
AS = 10(0,06V¢-2.8) s (4)

Component A, represents the contribution by continental aerosols. AM is an
air mass parameter that is allowed to range between integer values of 1 for open
ocean and 10 for coastal areas and is given by

AM = INT(Rn/4) + 1, 5)

where Rn is the measured atmospheric radon content expressed in pCi/m. In the
absence of radon measurements, the air mass factor can be related to the elapsed
time, T(days) for the air mass to reach the point of observation:

AM = INT[9exp(-T/4)] + 1 . 6)

Components A, and A, represent equilibrium sea spray particles generated by
the surface wind speed averaged over 24 hours (V, in m/s) and the current surface
wind speed (V, in m/s), respectively. (It should be noted that the current wind speed
component is different from the value published in LOWTRAN 6. This modification
was found to be necessary (Wollenweber, 1988) to match previously published
measurements of IR sky radiances and near surface aerosol size distributions
(Hughes, 1987) using the model. In Equation (1), r;, the modal radius for each
component referenced to a relative humidity of 80% (r,= 0.03 um, r, = 0.24 um and
r; = 2.0 um) is allowed to grow with relative humidity (RH) according to the
(Fitzgerald, 1975) formula

f = [(2 - RH/100)/6(1 - RH/100)]'* . (7N

The contribution to the total extinction or absorption by each component can
then be written as

0ea @i = 6PC| Qua Grm)exp [- () ar} ®

where C; =(0.001n/f)A; . The factor f-* in the expression for C; ensures a constant
total number of particles as the relative humidity increases. Q,,4(\,r,m) is the cross
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section of the spherical particle, and m is the complex refractive index, which is
allowed to change from that of dry sea salt as the particle deliquesces with increasing
humidity. LOWTRAN 6 provides precalculated values in tabular form of the param-
eter g,,,(7; )/C; at discrete wavelengths for four relative humidities (50%, 85%, 90%
and 99%), from which the average extinction for a specific wavelength band and
relative humidity can be readily determined by interpolation. When an observed
surface visibility (VIS,) is available as an input to the model, the amplitudes of the
three components are adjusted by a scaling factor (SF) so that the calculated aerosol
extinction coefficient, o, at a wavelength of 0.55 um is the same as the observed
extinction, oo, determined from the relationship

3.912 9

where o, is the Rayleigh contribution to extinction at 0.55 um.
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